

MIDASPLUS™
P R O G R A M M E R ' S

C O M P A N I O N

First Edition

by
Ethan Richardson

This document reflects the software
as of Master Disk Revision 19.A.

Prime Computer, Inc.

Prime Park

Natick, Massachusetts 01760

C O P Y R I G H T I N F O R M A T I O N

The information in this document is subject
to change without notice and should not be
construed as a commitment by Prime
Computer, Inc. Prime Computer, Inc.
assumes no responsibility for any errors that
may appear in this document.

The software described in this document is
furnished under a license and may be used or
copied only in accordance with the terms of
such license.

Copyright © 1986 by
Prime Computer, Inc.

Prime Park
Natick, Massachusetts 01760

PRIME and PRIMOS are registered
trademarks of Prime Computer, Inc. The
PRIME logo is a trademark of Prime
Computer, Inc.

DISCOVER, MIDASPLUS, PERFORMER,
Prime INFORMATION, PRIMELINK,
PRIME MEDUSA, PRIMENET,
PRIME/SNA, PRIME TIMER, PRMEWAY,
PRIMDC, PRISAM, PRODUCER, PST 100,
PT200, PW150, RINGNET, 50 Series, 750,
850, 2250, 2350, 2450, 2550, 2655, 9650, 9655,
9750, 9950, and 9955 are also trademarks of
Prime Computer, Inc.

P R I N T I N G HISTORY
MIDASPLUS P R O G R A M M E R ' S

C O M P A N I O N
DOC10045-1XA

Edition Date Software
Release

First April 1986 19.4

C U S T O M E R S U P P O R T C E N T E R

Prime provides the following toll-free
numbers for customers in the United States
needing service:

1-800-322-2838 (within Massachusetts)
1-800-541-8888 (within Alaska)
1-800-651-1313 (within Hawaii)
1-800-343-2320 (within other states)

H O W TO ORDER
TECHNICAL DOCUMENTS

Follow the instructions below to obtain a
catalog, a price list, and information on
placing orders.

United States Only

Call Prime Telemarketing,
toll free, at 800-343-2533,
Monday through Friday,
8:30 a.m. to 8:00 p.m. (EST).

International

Contact your local Prime
subsidiary or distributor.

CREDITS

Editor Thelma J. Henner

Project Support Anne Marie Fantasia
Joan Karp
Kathy Normington
Michael Rawlings
Richard M. Walsh
Susan Windheim

CONTENTS

1 UTILITIES

CREATK
Interface Requirements
The CREATK Dialog
Key Types

KBUILD
Input Files
The KBUILD Dialog
KBUILD Supported Input File

Types
Kiddel

The KIDDEL Dialog
MPACK

The MPACK Dialog
MDUMP
MDUMP Options
The MDUMP Dialog

MPLUSCLUP
MPLUSCLUP Options

SPY

2
2
3
7
9

10
10
15

16
16
18
19
21
21
22
24
25
25

Contents vi

2 T H E F O R T R A N 27
I N T E R F A C E

Subroutine Call Sequences 28
Flag Use 29
MIDASPLUS Flag Meanings 31

Precedence of Conflicting Flags 34
Communications Array 34

3 T H E C O B O L I N T E R F A C E 37

Language-Dependent 38
Restrictions

Opening and Closing a 40
MIDASPLUS File

Error Handling 44
File Positioning 45

The START Statement 45
The READ Statement 46

Adding Records 47
Rewriting Records 48
Deleting Records 49

4 T H E B A S I C / V M 51
I N T E R F A C E T O
M I D A S P L U S

Language-Dependent 52
Restrictions

Opening/Closing MIDASPLUS 53
Files

E r r o r Handl ing
File Posi t ioning
Adding Records
Reading Records
U p d a t i n g Records
Delet ing Records

5 T H E P L / I S U B S E T G
I N T E R F A C E

Language-Dependen t
Res t r ic t ions

O p e n i n g / C r e a t i n g A
MIDASPLUS File F r o m
P L / I - G

Add ing Records
Reading a MIDASPLUS File
U p d a t i n g File Records
Deleting Records

6 T H E V R P G I N T E R F A C E

Language-Dependen t

54

54
56

58
59
60

6 3

64

65

67

68
69

70

7 1

72

Restrictions
Describing a MIDASPLUS File 72

in VRPG

THE OFFLINE CREATE 79
ROUTINES

KX$CRE 80
The Pridef and Secdef Arrays 81

Contents vii

Contents viii

KX$RFC 85
KX$RFC Arguments 86

8 T H E O F F L I N E B U I L D 89
R O U T I N E S

PRIBLD 90
SECBLD 91
BILD$R 93

9 E R R O R M E S S A G E S 95

KBUILD Error Messages 96
MDUMP Error Messages 99
Kiddel Error Messages 100
SPY Errors 100
MPACK Error Messages 101

Fatal Messages 101
Warning Messages 103

KX$CRE Error Messages 104
PRIBLD, SECBLD, and 106

BILD$R Error Messages
Runtime Error Codes 111
Miscellaneous Error Codes 112
READ /WRITE Error Codes 113
Programming Error Codes 115
Internal Error Codes 116
Additional Error Codes 117

COBOL STATUS CODES 118

Prime Documentation
Conventions

The following conventions are used in
command formats, statement formats, and in
examples throughout this document.
Examples illustrate the uses of these
commands and statements in typical
applications. Terminal input may be entered
in either uppercase or lowercase.

Uppercase: In command formats, words in
uppercase indicate the actual names of
commands, statements, and keywords. They
can be entered in either uppercase or
lowercase.

MPLUSCLUP

Lowercase italic: In command formats,
words in lowercase italic indicate items for
which the user must substitute a suitable
value.

key-name

IX

Brackets []: Brackets enclose a list of one or
more optional items. Choose none or one of
these items (0 to 1).

[OWNER-IS literal-1]

Color: In examples, color indicates required
user input.

CREATK Yes

Braces {}: Braces enclose a vertical list of
items. Choose one and only one of these
items.

(SEQUENTIAL |
| RANDOM >
I DYNAMIC !

[RETURN J: Indicates a return key.
[RETURN] is used in examples to show that
the user presses the RETURN key and
nothing else in response to a MEDASPLUS
utility prompt.

[RETURN]

The term word in this manual means a 16-bit
entity.

M O N O S P A C E : Indicates system prompts
and messages, and interactive dialog.

FUNCTION?

I

UTILITIES

This chapter contains information
concerning the seven utilities that are
available to the MIDASPLUS user. For each
utility there is an explantion of its use, and,
in most cases, a dialog of the utility's
prompts and user responses. Also included is
information that the MIDASPLUS user may
wish to reference while using a utility. For
instance, in the KBUILD section you will find
a table of the key type codes and the
allowable length specifications. For more
detailed information on the MIDASPLUS
utilities see the MIDASPLUS User's Guide.

UTILITIES

UTILITIES 2

CREATK

The CREATK utility sets up an empty
MIDASPLUS file template according to user
supplied specifications. It also provides you
with a way to modify a file, or obtain the
template information needed to design an
access program.

Use CREATK to

• Set up a template and allocate space for
a MIDASPLUS file.

• Get estimates of how much room is
needed for a projected number of files.

• Alter an existing MIDASPLUS file.

• Obtain information about an existing
MIDASPLUS file template and its
contents.

I n t e r f a c e R e q u i r e m e n t s

When using CREATK to set up a
MIDASPLUS file template you must make
sure that the parameters you provide
correspond to the interface requirements of
the language you intend to use to access the
file. See the section of this manual that
pertains to your language for specific interface
requirements.

T h e C R E A T K Dia log

The following is a sequential list of the
C R E A T K dialog. Not all of the p rompts
appear with any given invocation of
C R E A T K . For instance, a response of N O to
the NEW F ILE? prompt will cause the
FUNCTION? p rompt to appear, and eliminate
the p rompt s t ha t request specifications for a
new file.

MINIMUM OPTIONS?
YES, for minimum options.

NO, if you wish to change default settings
of segment length, index block size, etc.. .

FILE NAME
The pa thname of the file to be created,
modified, or examined.

NEW FILE
YES, to create a new template .

NO, to invoke the extended functions
option.

FUNCTION?

The function you wish to invoke. See
Table 1-1 below. This p rompt appears
only if NO was entered in response to the
preceding prompt . Type QUIT to exit.

UTILITIES

UTILITIES 4

DIRECT ACCESS?

YES, to create a direct access file.

NO, to create a keyed-index file.

PRIMARY KEY TYPE:

With keyed-index file, enter appropria te
key-type code (A,B,D,I,L,S). See Table 2.

Wi th direct access file, enter B if the file
is for COBOL interface, A if the file is for
V R P G interface, or enter the appropriate
code (A,B,I,S,L) if the file is for
F O R T R A N interface. See Table 2.

PRIMARY KEY SIZE = :
The key size. See Table 2.

DATA SIZE IN WORDS = :

If records are fixed-length, enter da ta
length in words (one w o r d = t w o bytes). If
records are variable-length, enter 0 or
press [RETURN]. If the MIDASPLUS file
will be accessed by a COBOL program,
include the total length of all keys in the
da ta size.

NUMBER OF ENTRIES = :
The maximum number of entries
(records) you expect to have in the file.
This p rompt appears only if you are
creating a direct access file.

The following three prompts appear only if
you entered NO in response to the MINIMUM
o p t i o n s prompt . For best results, all three
block sizes should be the same.

FIRST LEVEL INDEX BLOCK SIZE = :
The first level block size. The

recommended block size is 1024.

SECOND LEVEL INDEX BLOCK SIZE = :

The second level index block size.

LAST LEVEL INDEX BLOCK SIZE = :
The last level block size.

SECONDARY INDEX

INDEX NO.?
A number(l -17) to indicate the secondary
index being defined. Type 0 or press
[RETURN") to end the secondary index
definition sequence.

DUPLICATE KEYS PERMITTED?
YES or NO.

KEY TYPE:
The appropria te key da ta type code
(A,B,D,I,L,S). See Table 2.

KEY SIZE = :
The size in words, bytes, or bits.

UTILITIES

UTILITIES 6

SECONDARY DATA SIZE IN WORDS = :
The number of words of secondary da ta
to be stored with this secondary key, or
[RETURN] to continue. The use of
secondary da ta is not recommended.

The secondary index prompts repeat,
enabling you to enter information about each
secondary index. To complete the C R E A T K
process, press [RETURN] at the INDEX NO?
prompt .

Table 1 lists the possible responses to
C R E A T K ' S FUNCTION? prompt and
summarizes the resulting action.

TABLE 1. CREATK Functions

Response Action

ADD
COUNT
DATA
EXTEND

FILE
HELP
MODIFY
PRINT
QUIT
[RETURN
SIZE
USAGE
VERSION

Add an index
Count actual index entries
Change da ta record size
Change segment & segment
directory length
Open a new file

P r i n t this summary
Modify an existing subfile
P r in t descriptor information

Exi t C R E A T K
) Same as Q U I T

Determine the size of a file
Display current index usage

MIDASPLUS defaults for this
file

Key Types
Table 2 lists appropriate responses to

CREATK'S KEY TYPE prompt, and their
meanings. Your choice must be compatible
with the restrictions of the access language
you plan to use. See the MIDASPLUS User's
Guide for examples of CREATK dialogs and
more complete information concerning the
features of CREATK.

UTILITIES

UTILITIES 8

TABLE 2. MIDASPLUS File Key Types

Key Code
and Type

A ASCII

B Bit String

D Double Precision
Floating Point

I Short Integer
(INT*2)

L Long Integer
(INT*4)

S Single Precision
Floating Point

Length
Specifications

Words or Bytes:
W nn or B nn
Max. 32 words
(64 bytes)

Bits or Words:
B nnn or W nn
Max. 16 words
(256 bits)

Hardware-defined:
4 words

Hardware-defined:
1 word

Hardware-defined:
2 words

Hardware-defined:
2 words

KBUILD
The pr imary function of KBUILD is adding

large numbers of records to an empty
MEDASPLUS file, but KBUILD performs
other functions, including

• Adding da ta to a new (that is,
" empty") MIDASPLUS file template

• Adding new da ta and index entries to
an existing MIDASPLUS file tha t
already contains da ta entries

• Building keyed-index MIDASPLUS files
containing either fixed-length or
variable-length records

• Building direct access MIDASPLUS files

• Adding entries from an external da t a
file to a new secondary index subfile

• Reformatt ing a file (adding more keys

or transferring data)

• Convert ing a field from existing
MIDASPLUS da ta subfile records to a
secondary key field

Before using KBUILD be sure you know the
record s t ructure of your input files and the
configuration of your MIDASPLUS file
template . Use the P R I N T function of
C R E A T K to obtain this information.

UTILITIES

UTILITIES 10

Input F i l e s

You may process up to 99 input files at one
time by giving them names that start with
the same letters, and end with a 2 digit
number that denotes the sequence of the input
process. For example, the following files
would be processed by KBUILD in the order
in which they are listed:

BRANCH01
BRANCH02
BRANCH03
etc...

Multiple input files must all be in the same
directory.

T h e K B U I L D Dia log

Type KBUILD to invoke the KBUILD utility.
The following is a summary of the KBUILD
dialog and user responses. Prompt numbers
are added for clarity. The numbers do not
appear on screen.

1. SECONDARIES ONLY?
YES, to build one or more of the
secondary index subfiles.

NO, to build data and index subfiles. The
dialog continues at prompt 4.

2. USE MIDASPLUS DATA?
YES, to build secondary indexes from
records in an existing MIDASPLUS file.
The dialog continues at p rompt 3.

NO, to build secondary indexes from a
non-MIDASPLUS input file. The dialog
continues at p rompt 4.

3. ENTER MIDASPLUS FILENAME:
The pa thname of the MIDASPLUS files
from which the secondary keys will come.
The dialog continues at p rompt 14.

4. ENTER INPUT FILENAME:

The name of the file to be processed. If
you are processing multiple files, enter
the name of the file with the lowest
sequence number .

5. ENTER INPUT RECORD LENGTH
(WORDS):

The size, in 16-bit words, of the input file
record.

6. INPUT FILE TYPE:

The appropr ia te KBUILD code. See
Table 3.

7. ENTER NUMBER OF F I L E S :
The number of input files.

UTILITIES 11

UTILITIES 12

8. ENTER OUTPUT FILENAME:
The pathname of the MIDASPLUS file
being built.

If the MIDASPLUS file has fixed-length
records, the dialog continues at prompt
13. Otherwise, the dialog continues with
the next prompt.

9. THE OUTPUT FILE SELECTED
CONTAINS VARIABLE LENGTH DATA
RECORDS. IS THE OUTPUT RECORD
LENGTH SPECIFIED IN EACH INPUT
RECORD AN ASCII STRING OR A
BINARY (INT*) STRING? (ENTER A
OR B) :
A, if the input file was created by an
Editor, COBOL, or VRPG, and the
output record length is in ASCII form.
The dialog continues with prompt 10.

B, if the file is BINARY or FTNBIN.
The dialog continues with prompt 12.

10. ENTER STARTING CHARACTER
POSITION IN INPUT RECORD:
The character position where the output
record length specification begins.

11. ENTER ENDING CHARACTER POSITION
IN INPUT RECORD:
The character position where the output

record length specification ends. Dialog
continues with p rompt 13.

12. ENTER STARTING WORD NUMBER IN

INPUT RECORD:

The word number tha t specifies the
ou tpu t record length for Binary (INT*2)
representations.

13. ENTER STARTING CHARACTER

POSITION, PRIMARY KEY:

The s tar t ing position of the input record
field t ha t contains the pr imary key.

14. SECONDARY KEY NUMBER:

The number of the secondary index you
are building.

15. ENTER STARTING CHARACTER

POSITION:
The character position in the input

record where the secondary key field
begins.

P r o m p t s 14 and 15 are repeated until
you press [RETURN).

16. I S THE FILE SORTED?
YES, if the file is sorted. The dialog
continues with prompt 17.

NO, if the file is unsorted. The dialog
continues at p rompt 19.

UTILITIES IS

UTILITIES 14

17. IS THE PRIMARY KEY SORTED?
YES, if the input file is sorted by the
pr imary key field.

NO, if the input file is not sorted by the
pr imary key.

18. ENTER INDEX NUMBER OF SECONDARY
SORT KEY:
The secondary key number on which the
file is sorted, or press [RETURN]. The
p rompt is repeated until you press
[RETURN].

19. ENTER LOG/ERROR FILE NAME:
A file name in which to store errors and
KBUILD statistics.

If you press [RETURN] the information
is sent to your terminal, but is not
recorded.

20. ENTER MILESTONE COUNT:

The frequency at which you want the
statistics displayed and recorded in a
log/error file.

If you enter 0, milestones are printed for
the first and last records of the input file
only.

K B U I L D Suppor ted Input F i l e
T y p e s

Table 3 lists IvBUILD's file type codes and
their descriptions.

TABLE 3. KBUILD-Supported Input File
Types

File Type Description

TEXT A file containing ASCII data
that has been created by an
editor.

BINARY A binary file created by
PRWF$$, which is usually
called from a FORTRAN
program.

COBOL An uncompressed ASCII file
created by a COBOL WRITE
statement.

FTNBIN A binary file created by a
FORTRAN WRITE statement
via the routine 0$BD07.

RPG An uncompressed output file
created by a VRPG program.

UTILITIES 15

UTILITIES 16

Kiddel

The KIDDEL utility offers the fastest way
to delete or zero out a MIDASPLUS file.
D E L E T E gets rid of the entire index subfile;
ZERO deletes only the entries and unused
space, bu t leaves the empty subfile. By
responding to the appropriate KIDDEL
p rompt you may

• Delete an entire MTDASPLUS file, or
delete one or more of the secondary
index subfiles.

• Delete work files (called junk files) left
over from an aborted M P A C K run.

• Zero out all entries from one or more
secondary index subfiles.

• Zero out an entire MIDASPLUS file,
leaving an empty template.

The KIDDEL Dialog
Type KIDDEL to invoke the KIDDEL utili ty.

The following dialog shows the KIDDEL
prompts and appropriate user responses.

F ILE NAME
The name of the MIDASPLUS file to be
used.

DELETE INDEXES

One of the following:

Secondary index subfile numbers ,
separated by commas, indicating the
indexes you want to delete.

ALL, to kill the entire file, delete the file
from its UFD, and re turn you to
PR1MOS.

JUNK, to delete work area information
left over after an aborted M P A C K
operation.

NONE, to get you to the next p rompt

wi thout deleting any index subfiles.

ZERO INDEXES
This p rompt appears only if you entered
NONE to the above prompt : Ente r one of
the following.

Secondary index subfile numbers ,
separated by commas, indicating the
indexes you want to zero out.

ALL, to zero all index subfiles and the
da t a subfile, or to reinitialize direct
access files.

NONE, to re turn you to PRIMOS.

UTILITIES 17

UTILITIES 18

N o t e
If you want to delete or zero the
pr imary index, use the ALL
response. Do not enter 0 (primary
index) to either the DELETE
INDEXES or ZERO INDEXES
prompts .

See the MIDASPLUS User's Guide for more
complete information.

MPACK

The M P A C K utility is used to recover da ta
record space marked for deletion, to increase
file efficiency, to unlock records, and to
restructure index subfiles. Fur ther , M P A C K
must be run on a file whose template has been
modified by the ADD, DATA, E X T E N D , or
MODIFY options of CREATK before the
changes are actualized.

The M P A C K functions are

• Reclaiming the space tha t deleted
records occupy

• Packing indexes to minimize disk space
used

• Reordering the data subfile to match
the order of primary index subfile
entries (complete file restructure)

• Logging errors and milestones to keep
tabs on errors and to monitor the
ongoing operation

• Unlocking any of the data records left
locked on disk after a program abort or
failure

The MPACK Dialog
The MPACK dialog and the appropriate

responses are shown below. Prompt numbers
are added for clarity.

1. ENTER MIDASPLUS FILENAME
The pathname of the existing
MIDASPLUS file.

2. 'MPACK' or 'UNLOCK'
MPACK or UNLOCK. If you enter UNLOCK,
the dialog continues at prompt 6.

3. ENTER LIST OF INDEXES ALL OR
DATA:
Index numbers separated by commas or
spaces, in order to pack index subfiles.
The dialog continues at prompt 6.

ALL, to restructure all indexes in the file
and unlock all data records. The dialog
continues at prompt 6.

UTILITIES 19

UTILITIES 20

DATA, to restructure the da ta file and all
indexes.

4. OK TO OVERWRITE FILE?
YES or NO. This prompt is given only if
you gave the DATA response to the
previous prompt .

5. NEW FILENAME:
The name tha t you want M P A C K to give
to the restructured file. This p rompt
appears only if you answered NO to
p rompt 4.

6. ERR/LOG FILE?

An optional error/ log filename for errors

and milestone counts. Press [RETURN-]

if you do not want an error/ log file.

7. MILESTONE COUNT?
The appropriate number of records after
which a milestone report will be
generated.

M D U M P

The MDUMP utility dumps a MIDASPLUS
file into a sequential disk file. Once you run
MDUMP on a MIDASPLUS file, you can:

• Edit the resulting sequential file, if the
data is in ASCII format.

• Edit the MDUMP output file and use it
as an input file to KBUILD in order to
build a new MIDASPLUS file.

• Examine the resulting sequential file to
check a MIDASPLUS file's data records
and key values.

MDUMP also reports any damage that it
finds in the MIDASPLUS file being dumped,
and therefore can be a means of validating
the integrity of an index.

M D U M P O p t i o n s

MDUMP prompts you for the order,
contents, and format of the dump. The
prompts also ask you how and where
MDUMP should record the status and error
information generated by the dump. The
following options are available:

• Order of the dump

• Contents of the dump

• Format of the dump

UTILITIES 21

UTILITIES 22

• Log/error file

• Milestone recording

T h e M D U M P D i a l o g

The following list shows the MDUMP

dialog, appropria te responses, and the effect

of the responses:

ENTER TREENAME OF MIDAS FILE TO
DUMP:
The pa thname of the MIDASPLUS file to
be dumped.

ENTER DUMP METHOD ('DATA' OR AN
INDEX #) :

DATA, to dump records in the order of
the da ta subfile records, or an index
number (0 to 17) to dump records in
order found in the specified index.

DO YOU WANT THE DATA RECORD DUMPED?

YES, to dump the da ta record.

NO, to dump index keys only.

DO YOU WANT THE PRIMARY INDEX KEY
DUMPED?

YES, to dump the primary index keys.
The key value will be appended to the
da ta record if da ta record is also being
dumped.

NO, if you do not want to dump the
pr imary key.

DO YOU WANT THE INDEX <#> KEY
DUMPED?
YES, to dump the specified index.

NO, if you do not want to dump the
specified index.

The above p rompt appears only if you
specify a secondary index in response to
the second prompt .

ENTER OUTPUT FILE TREENAME:
A filename for the output file.

ENTER OUTPUT FILE FORMAT:
BINARY, COBOL, RPG, or TEXT. If you
are unsure, press [RETURN] or type
HELP to get a list of these options.

ENTER LOG/ERROR FILE NAME:

The name of the file to be opened for
recording errors and statistics. If this file
already exists, it will be overwrit ten.

Press [RETURN] if you do not want to
open a log/error file.

UTILITIES

UTILITIES 24

ENTER MILESTONE COUNT:
A number to indicate how often you
want the milestone report to appear.
En te r 0 for the briefest version of the
s ta tus report .

See the MIDASPLUS User's Guide for a
more complete explanation of MDUMP'S
features.

MPLUSCLUP
MPLUSCLUP cleans up MIDASPLUS

segment directories and subfiles, releases locks
held in memory, and cleans up and re­
initializes per-user information. The -ALL
option cleans up system information.
MPLUSCLUP also releases record locks t h a t
are recorded in main memory and reports if
any record locks are recorded on disk. (Use
the M P A C K utility to release locks recorded
on disk.)

Use MPLUSCLUP when you or another user
receive a fatal error or are force-logged out
and automat ic cleanup has not occurred.

M P L U S C L U P O p t i o n s
If you do not specify any options,

MPLUSCLUP will affect your own files only.
The system administrator can clean up other
user's files from the system console in the
debug mode, by using the following options:

MPLUSCLUP I -USER usernumber \

\ "ALL I
See the MIDASPLUS User's Guide for more
complete information.

SPY

SPY is a menu-driven utility that provides
the user with information used and updated
by MIDASPLUS during runtime. This
information includes:

• A table of data locks taken

• System-wide statistics on performance
and use of the system

• System-wide configurable parameters

• User-specific configurable parameters

UTILITIES 25

UTILITIES 26

To invoke the SPY utility, enter the name
SPY and then choose the appropriate option
from the menu. The three categories of
information available are

. DATA RECORD LOCKS

• SYSTEM STATISTICS

• SYSTEM CONFIGURATION

Depending upon your request, a second menu
may appear requiring an additional choice.
See the MIDASPLUS User's Guide for more
complete information.

THE FORTRAN
INTERFACE

This section contains information
concerning FORTRAN call sequences to
MIDASPLUS, flags, and the communication
array. Since MIDASPLUS was originally
written for FORTRAN, no special restrictions
apply other than the restrictions inherent to
MIDASPLUS itself, such as the limit of 17
secondary keys. The FORTRAN subroutines
can also be called from programs written in
PL/I-G or in C.

Insert the following files at the start of
every FORTRAN program that accesses a
MIDASPLUS file.

THE FORTRAN INTERFACE 27

THE FORTRAN INTERFACE 28

$INSERT SYSCOM>PARM.K.INS.FTN

$INSERT SYSCOM>KEYS.INS.FTN

Subroutine Call
Sequences

The following list shows the FORTRAN
subroutines and their call sequences.

Subroutine

ADD1$ \
DELET$ |
FIND$ 1
LOCK$ /
NEXT$ jj
UPDAT$ /

CLOSM$

GDAT$

Gall Sequence

(funi t , buffer , key.
a r ray , f l ags , a l t r t n ,
index, f i l e - n o , bufs iz .
keys i z) .

(fun i t , s t a tu s)

(un i t , f l ags , buffer .
bufsiz, status)

NTFYM$ (key, unit, status)

OPENM$ (key, pathname, naralen,
funit, status)

Flag Use

Table 4 shows in which subroutines the
various flags may be used.

THE FORTRAN INTERFACE 29

TABLE 4. Flag Use

Flag ADD1$ FIND$ NEXT$ LOCK$ UPDAT$ DELET$ GDATA$

x(R) x FL$USE
FL$RET
FL$KEY
FL$BIT
FL$PLW
FL$UKY
FL$SEC
FL$ULK
FL$FST
FL$NXT
FL$PRE

X

X

X

X

X

X

X

X

X

X

X

X

X

x(R)
X

X

X

X

X

X

X

X

X

x(R)
X

(R)-Requlred. (Rl)-Required for first record.
(Rs)-Required for all records after the first,

x(Rl)
x(Rs)

5
M

CO
C3

MIDASPLUS Flag
Meanings

The flag settings affect FORTRAN
subroutine calls. For example, if you included
the following program line in your program

FLAGS=FL$RET+FL$USE

and then included FLAGS in the proper place
in the call sequence, the two flags FL$RET
and FL$USE would be ON, effecting the
execution of your program in the manner
listed below. All other flags would be
considered OFF.

The flag settings and how they affect a
FORTRAN subroutine call are described
below.

FL$USE
ON: Use current copy of array.

OFF: Do not use current copy of array.

FL$RET
ON: Return entire array for use on
subsequent calls.

OFF: Return completion code only, in
array(l).

THE FORTRAN INTERFACE 81

THE FORTRAN INTERFACE 82

F L $ K E Y
ON: Return primary key in da ta record
buffer on calls to FIND$, N E X T $ and
L O C K $.

Do not make a copy of the pr imary key
to store in da ta record on calls to
ADD1$. Use only if pr imary key is first
field in da ta record.

O F F : Store a copy of pr imary key in
each da ta subfile record on calls to
ADD1$

Do not add primary key to the beginning

of the da ta buffer on calls to FIND$,

N E X T $ and LOCK$.

FL$BIT

ON: Interpret key size as bits if key is a
bit string, or in bytes if key is ASCII.

O F F : Interpret key size as words

(default).

F L $ P L W
ON: Position to next index entry greater
than or equal to current or user-supplied
entry.

O F F : Not in use.

FL$UKY
ON: Update user-supplied key field with
version stored in the file. Useful in
partial key searches.

OFF: Do not update user-supplied key
field.

FL$SEC
ON: Return secondary data instead of
data record.

OFF: Return data record read from data
subfile.

FL$ULK
ON: Unlock data entry only - do not
update it.

OFF: Update data entry and unlock it.

FL$FST
ON: Position to first index entry in
subfile.

OFF: Position to first entry that
matches current entry or user-supplied
key value.

THE FORTRAN INTERFACE S3

THE FORTRAN INTERFACE 84

FL$NXT
ON: Position to next index entry greater
than current entry or user-supplied key
value.

OFF: Position to next index entry that
matches current entry or user-supplied
key value.

FL$PRE
ON: Position to previous index entry.

OFF: Do not position to previous entry.

P r e c e d e n c e of C o n f l i c t i n g F l a g s

Certain flags have effects that conflict with
each other. In the case where conflicting flags
are set, the priority level is as follows:

• FL$FST

• FL$NXT

• FL$PLW

C o m m u n i c a t i o n s A r r a y

During keyed-index accessing, only the first
word of the communication array may be
modified. If the word is set to -1 ,
MIDASPLUS ignores the contents of the
array. If the word is set to 0 or 1,
MIDASPLUS uses the contents of the array.

During direct accessing, the user must

modify the first four words of the array, as
outlined by Table 5.

TABLE 5. Direct Access Array Format

Words Setting Meaning

1 0 or 1 Use array contents,
which are supplied
by the user.

2 entry size Pr imary key length
(in words) in words, plus da ta

record length in
words, plus 2
words. Supplied
by user.

3-4 record A single-precision
number (REAL*4) floating­

point record number .
Supplied by user.

5-14 Hash value, based on
current key value.
Supplied by system.

THE FORTRAN INTERFACE 35

THE COBOL
INTERFACE

The COBOL interface to MIDASPLUS is
based on the standard COBOL I/O
statements for INDEXED and RELATIVE
files. The following is a list of MIDASPLUS
terms and their COBOL equivalents:

MIDASPLUS

Keyed-Index file

Direct Access file

COBOL

INDEXED file

RELATIVE file

THE COBOL INTERFACE 87

THE COBOL INTERFACE 88

MIDASPLUS COBOL

Primary Key RECORD KEY
(indexed files)

Primary Key RELATIVE KEY
(relative files)

Secondary Key ALTERNATE
RECORD KEY

See the COBOL 74 Reference Guide or the
COBOL Reference Guide for detailed
information on COBOL syntax and concepts.
See the MIDASPLUS User's Guide for
differences between the CBL compiler and the
COBOL compiler.

Language-Dependent
Restrictions

COBOL places the following limitations on
MIDASPLUS files used in COBOL
applications:

• Up to 17 secondary keys are supported
per file (INDEXED only).

• Relative files do not support primary

keys. A relative key must be defined in

the working-storage section.

The pr imary key and all secondary keys
(if any) must be included in the da t a
record.

Secondary keys should not be embedded
in the pr imary key.

The only key types t ha t COBOL
supports are ASCII (A) and bit str ing
(B).

The maximum ASCII key size is 64

characters.

The maximum bit string key size is 32
characters.

For RELATIVE files, the pr imary key is
always defined as being from 8 bits to
48 bits in length. This allows for a
maximum of 999,999 entries in the file.

Secondary da ta is not supported.

The COBOL compiler does not support
variable length records. A COBOL
program is able to READ a variable
length record, but not W R I T E it.

The COBOL record size must match the
d a t a size defined for the file during
C R E A T K .

THE COBOL INTERFACE 89

THE COBOL INTERFACE 40

Opening and Closing a
MIDASPLUS File

To open a MIDASPLUS file from a COBOL
program follow the standard COBOL file I/O
procedures. The basic format for the
SELECT statement for an INDEXED file is as
follows:

SELECT filename

ASSIGN TO PFMS

ORGANIZATION IS INDEXED

SEQUENTIAL
ACCESS MODE IS j RANDOM

I DYNAMIC

RECORD KEY IS key-name-1

[ALTERNATE RECORD KEY
IS key-name-2
[WITH DUPLICATES]...]

[FILE STATUS IS status-code].

The basic format for the SELECT statement
for a RELATIVE file is as follows:

SELECT filename

ASSIGN TO PFMS

ORGANIZATION IS RELATIVE

{ SEQUENTLAL }
RANDOM
DYNAMIC)

[RELATIVE KEY IS key-name-l] *

[FILE STATUS IS status-code}.

* optional only if sequential access

See the COBOL H User's Guide for DATA
DIVISION requirements.

To open a MIDASPLUS file use the OPEN
statement. You can open more than one file,
but each file name specified in an OPEN
statement must appear in a SELECT and
ASSIGN statement and must be described
with an FD entry in the DATA DIVISION.
The format is:

(INPUT |
OPEN I 1-0 [

I OUTPUT J
filename-l[, filename-2]...

THE COBOL INTERFACE 41

THE COBOL INTERFACE 42

To close a MIDASPLUS file from a COBOL
program use

CLOSE filename-1 [, filename-2]...

Table 6 shows what statements can be used in
each access mode.

TABLE 6. Statements Permitted in Each Access Path

5
Q
O
to
o
fa

2
8

File Access
Mode

SEQUENTIAL

RANDOM

DYNAMIC

Statements

READ
WRITE
REWRITE
START
DELETE
READ
WRITE
REWRITE
START
DELETE
READ
WRITE
REWRITE
START
DELETE

Open /

INPUT
X

X

X

X

X

Aode

OUTPUT

X

X

X

1-0
X *

X **

X

X

X

X *

X

X

X

X *

X

X

X

X

* Records, are locked. ** Indexed files only.

THE COBOL INTERFACE U

Error Handling

One of the following three clauses for
handling runt ime errors must be specified for
each I / O verb.

• A T E N D directs control to an
end-of-file procedure if a logical end of
the file has been reached during a
sequential read. The format is as
follows:

A T END imperative-statement

• INVALID K E Y specifies the procedure
to be executed when an error occurs
during keyed operations. It tranfers
program control to a designated
procedure or performs some useful
action or series of actions. The format is
as follows:

INVALID KEY imperative-statement

• USE A F T E R specifies a program
procedure t ha t is executed if an error
occurs and the INVALID K E Y or A T
E N D clause are not present.

Put the USE AFTER statement in the
DECLARATIVES section of the
program. The format is as follows:

USE .AFTER STANDARD

EXCEPTION
ERROR

PROCEDURE ON

filename
INPUT
OUTPUT

I 1-0

Refer to the COBOL 74 Reference Guide for
complete details on error handlers.

File Positioning

The S T A R T Statement
The START statement positions the file

pointer to a specific record in a file opened for
SEQUENTIAL or DYNAMIC access. Use a
MOVE statement to assign a value to
key-name before implementing START.

THE COBOL INTERFACE 45

THE COBOL INTERFACE 46

The format is as follows:

START filename

(GREATER THAN]
NOT LESS THAN J key-name]
EQUAL TO)

[INVALID KEY imperative-statement].

For indexed files key-name can be the
primary key, a secondary key, or a part of
either type of key. For relative files key-name
must be the relative key.

The READ Statement

Sequential Reads: A sequential READ can
be executed on a file opened in the
SEQUENTIAL or DYNAMIC mode. A
sequential READ to a DYNAMIC file requires
the NEXT option. Position the file pointer to
the desired starting location by a START,
OPEN, or keyed READ. The format for a
sequential READ is as follows:

READ filename [NEXT] RECORD
[INTO read-var)
[AT END imperative-statement].

Keyed Reads: A keyed read can be
executed on a file opened in the RANDOM or
DYNAMIC mode. To perform keyed reads on
an Indexed file, first specify the key by using
a MOVE statement to put the value into
key-name and then use the following READ
statement:

READ filename RECORD
|INTO read-var] [KEY IS key-name]
[INVALID KEY imperative-statement}.

The KEY IS clause is not used for Relative
files. Instead, the key value being searched for
must be moved into the relative key field.

Adding Records

If a file's access mode is RANDOM or
DYNAMIC, you may write to it when it is
opened for OUTPUT or I-O. Be sure to put
the appropriate value in the RECORD KEY
or ALTERNATE KEY before executing a
WRITE. You may write to a RELATIVE
SEQUENTIAL file only when it is open for
OUTPUT. For a RELATIVE SEQUENTIAL
file do not supply the relative key value. It is
returned to you after each write.

THE COBOL INTERFACE 47

THE COBOL INTERFACE 48

The W R I T E statement format is:

W R I T E record-name [FROM from-area]
[INVALID KEY imperative-statement}.

Rewriting Records

The COBOL programming language
updates MEDASPLUS records by rewriting the
entire record. You can change any field with
the exception of the RECORD KEY. Only
the current record may be updated, so be sure
to position the file pointer and lock the record
first with a READ. The file must be open for
I-O. The R E W R I T E statement format is:

R E W R I T E record-name [FROM from-area]
[INVALID KEY imperative-statement].

Deleting Records

To delete a record in a RANDOM or
DYNAMIC file, move the primary key to the
RECORD KEY (or RELATIVE KEY if the
file is a relative file) before executing the
DELETE statement. With a SEQUENTIAL
file, first position the file pointer with a
READ before executing the DELETE
statement. The file must be opened for 1-0 in
order to delete entries from it. The DELETE
statement format is:

DELETE filename RECORD
[INVALID KEY imperative-statement].

The INVALID KEY clause is not used for
SEQUENTIAL files.

THE COBOL INTERFACE

THE BASIC/VM
INTERFACE TO
MIDASPLUS

The BASIC/VM interface to MIDASPLUS
consists of a special set of file handling
statements that are similar in format to the
standard file handling statements of
BASIC/VM. They are

• ADD

• DEFINE FILE

• POSITION

• READ

THE BASIC/VM INTERFACE 51

THE BASIC'/VM INTERFACE 52

• REMOVE

• REWIND

. UPDATE

The READ, POSITION, and DELETE
statements all automatically lock a record
before performing an operation.

Language-Dependent
Restrictions

When creating a MIDASPLUS file to be
accessed by a BASIC/VM program be sure
the template conforms to the following
restrictions:

• Only keyed-index files are allowed.

• Do not use more than 17 secondary
indexes per file. Duplicate index entries
are allowed.

• Do not add secondary data.

Although key fields are not required to be
part of the data record, it is strongly
recommended that you include them.

Opening/Closing
MIDASPLUS Files

BASIC/VM uses the same methods of
opening and closing a MIDASPLUS file as it
uses for any other type of file - the
D E F I N E FILE and the CLOSE s ta tements .
Use the following format to open a file:

D E F I N E [READ] FILE #unit = filename,

MIDAS [, record-size)

The parameters and their uses are

READ
Opens file for reading only.

#unit
User supplied unit number from 1 to 12.

filename
Name of the MIDASPLUS file, expressed
as either a BASIC string variable tha t
contains a file name or a quoted string
constant .

record-size

Length of the MIDASPLUS da ta subfile
in words, where one word equals two
characters. If the file has variable length
records, omit record-size.

THE BASIC/VM INTERFACE 53

THE BASIC/VM INTERFACE 54

MIDASPLUS files are closed in the same way
as any other BASIC/VM file:

CLOSE #unit

Error Handling

The standard BASIC/VM ON ERROR
statement traps any MIDASPLUS errors
occurring during runtime. Use the following
format:

ON ERROR [#unit] GOTO line-number

Use the following PRINT statement to print
out the MIDASPLUS error code:

PRINT MIDASERR

File Positioning

There are two BASIC/VM statements that
specifically move the file pointer, the
POSITION statement, and the REWIND
statement. The following is the format for
the POSITON statement:

POSITION if unit,

' SEQ
KEY [key-number] = key-value

{ SAMEKEY

The parameters and their uses are

#unit
File unit number, previously assigned by
DEFINE.

key-number
Number from 0 to 17 that specifies the
key. If zero or unspecified, the primary
key is used.

key-value
Key value enclosed in quotes, or a legal
string expression.

SEQ
Advances the pointer to the next record
in the file, according to the order of the
current index.

SAMEKEY
Advances the file pointer through a series
of records with duplicate key values.

THE BASIC/VM INTERFACE 55

THE BASIC/VM INTERFACE 56

N o t e
If there is no record at the specified
file position, an error is flagged.

Use the following to reset the file pointer to
the lowest value of a specified key:

REWIND #unit [, KEY num-expr]

The parameters and their uses are

#unit
File unit number, previously assigned by
DEFINE.

num-expr

Key (index subfile number) whose subfile
pointer is to be rewound.

Adding Records

The ADD statement adds a record to a
MIDASPLUS file without changing the
current file position or the current record.
Although only the primary key value is
required in an ADD, one or more secondary
key values may be added to the appropriate
index subfiles with a single ADD. The format
of the ADD sta tement is:

ADD #unit, new-record,

J PRIM!
{ KEY[0-expr] = keyO-val \,keylist)

Where keylist has the form:

Key key-number=key-val ...

The parameters and their uses are

#unit
File unit number, previously assigned by
DEFINE.

new-record

Record to be added. Length must equal

record length declared for the file.

P R I M K E Y
Pr imary key.

KEY[0-expr]

A literal or numeric expression t ha t

evaluates to zero.

keyO-val

Pr imary key value. May be a literal or
numeric expression.

THE BASIC/VM INTERFACE 57

THE BASIC/VM INTERFACE 58

Reading Records

The BASIC/VM READ statement allows
you to read records from a MEDASPLUS file
sequentially, by duplicate keys, and by
primary or secondary key values. READ locks
the record until another operation is
performed to change the file pointer location.

READ [KEY) #unit
i SEQ |
\ ,[KEY [key-num] = key-val] ,readvar >
[SAMEKEY j

The parameters and their uses are

KEY
The KEY option instructs MEDASPLUS
to return a full key value in readvar
during a partial key search.

#unit
File unit number, previously assigned by
DEFINE.

key-num
Literal or numeric expresion indicating
key (index subfile) to be used in the read.

key-val
Full or partial value on which to conduct
the search.

SEQ
Advances the pointer to the next record
in the file, according to the order of the
current index.

SAMEKEY
Advances the file pointer through a series
of records with duplicate key values.

read-var
String variable that the retrieved record
is read into.

Updating Records

The UPDATE statement replaces the
current record with a new record value.
UPDATE does not change any of the index
subfile entries. To change key values you
must first delete the record, and then add it
to the file along with the new key values. The
UPDATE format is:

UPDATE #unit, new-record

The parameters and their uses are

File unit number, previously assigned by
DEFINE.

THE BASIC/VM INTERFACE 59

THE BASIC/VM INTERFACE

new-record
New data record value

Deleting Records

The REMOVE statement selectively deletes
index entries for a particular data record. If
you specify only the primary key, the
associated data record and the primary index
entries are deleted. In this case, the
secondary key entries are not deleted until
they are used to reference the now deleted
data record, or until MPACK is run on the
file. The REMOVE format is:

REMOVE #unit
[,KEY [key-num] = key-val]
[,KEY [key-num]=key-val]...

The parameters and their uses are

#unit
File unit number, previously assigned by
DEFINE.

key-num
Numeric variable containing optional key
number Primary key is the default value.

key-val
String expression indicating the key entry
to be deleted.

Note
REMOVE without any options
deletes the current key.

THE BASIC/VM INTERFACE 61

THE P L / I SUBSET G
INTERFACE

This section documents the PL/I Subset G
interface to MIDASPLUS files. PL/I-G views
a MIDASPLUS file as a RECORD KEYED
SEQUENTIAL file that the standard PL/I-G
READ, WRITE, REWRITE, and DELETE
statements can access.

For more complete information concerning
the PL/I-G interface to a MIDASPLUS file,
see the MIDASPLUS User' Guide. For
information concerning programming in PL/I-
G, see the PL/I Subset G Reference Guide.

THE PL/I SUBSET G INTERFACE 63

THE PL/I SUBSET G INTERFACE 64

Language-Dependent
Restrictions

The P L / I - G interface to MIDASPLUS does
not support the following MIDASPLUS
features:

• Non-ASCII primary keys

• Secondary keys

• Direct access MIDASPLUS files

• Secondary data

If you want to set up a MIDASPLUS file with
secondary keys, fixed-length records, or a
pr imary key of less then 32 characters, use
C R E A T K . You will still be able to access the
file wi th PL/ I -G , but you will not be able to
use PL / I -G to access the secondary index
subfiles.

Opening/Creating A
MIDASPLUS File From
PL/I -G

To create a MIDASPLUS file from a PL/I-G
program, use

DECLARE filename FILE
KEYED SEQUENTIAL;
OPEN FILE [filename] OUTPUT;

To open an existing MIDASPLUS file use

(OUTPUT |
OPEN FILE [filename) j INPUT !

I UPDATE J

The parameters and their uses are

Filename
The name of file being opened, not longer
than 8 characters. The file should be
declared as KEYED SEQUENTIAL.

INPUT
File access mode is "read only".

OUTPUT
File access mode is "write only".
Primarily used to open and create new
files, but may also be used to make
additions to existing KLEYED
SEQUENTIAL files.

THE PL/I SUBSET G INTERFACE 65

THE PL/I SUBSET G INTERFACE 66

UPDATE
File access mode permits READ, WRITE,
UPDATE, and DELETE operations.

Table 7 shows which PL/I-G statements are
allowed by the various access modes.

TABLE 7. Access Mode Statements

Access Mode Valid
PL/I-G Statements

INPUT READ

OUTPUT WRITE

UPDATE READ
WRITE
REWRITE
DELETE

You can open a file while declaring it by
including one of the I/O modes in the
DECLARE statement, for example:

DCL filename FILE KEYED
SEQUENTIAL INPUT;

Adding Records

To add records to a new or existing file,
open the file for OUTPUT or UPDATE. Use
the following to WRITE records to a
MEDASPLUS file.

WRITE FILE(filename) FROM(var)
KEYFROM(keyvar);

The parameters and their uses are

var
A variable, declared as type character,
containing the new record information.

keyvar
A variable containing a unique value
which can be either a character string or
numeric field, and which will be the
primary key. If character string, it
cannot be VARYING, and cannot be
more than 32 characters.

THE PL/I SUBSET G INTERFACE 67

THE PL/I SUBSET G INTERFACE 68

Reading a MIDASPLUS
File

There are three types of file reads t ha t
P L / I - G can perform on a MIDASPLUS file: a
keyed read, which returns a record based on a
user-supplied key; a sequential read in which
records are read in primary key order; a
key-value read, in which the full value of the
pr imary key is returned. The key-value read
can only be done during a non-keyed read.
Open the file for INPUT or UPDATE in
order to read it. The READ sta tement
format is:

READ FILE {filename) INTO(uar)
[KEY(keyvar)}

[K E Y T O {curkey)};

The parameters and their uses are

var

A variable into which the file is read.

keyvar

The pr imary key of the record to be
read. If omitted, next sequential record
is read.

curkey
A variable in which the current key is
returned. Declare curkey as CHAR(32)
VARYING.

Updating File Records

Records in an existing MIDASPLUS file can
be updated with the REWRITE statement.
The record is locked during a REWRITE and
is kept locked until another I/O operation is
performed. The current record position is not
updated. Use the following format:

REWRITE FlLE(filename)
FROM[datavar) [KEY{keyvar)];

The parameters and their uses are

datavar
A variable containing the data that will
replace the record to be updated.

keyvar
The primary key of the record to be
read. If omitted, the current record is
updated.

THE PL/I SUBSET G INTERFACE 69

THE PL/I SUBSET G INTERFACE 70

Deleting Records

To delete a record from a MIDASPLUS file,
you must open the file for UPDATE. Use the
following format:

DELETE F\LE{filename) KEY{keyvar) ;

The parameters and their uses are

keyvar
The primary key of the record to be
deleted. If omitted, the current record is
deleted.

6

THE VRPG
INTERFACE

Prime's VRPG supports both keyed-index
and direct access MIDASPLUS files. In
VRPG, keyed-index MIDASPLUS files are
called Indexed files. Column 32 of the FILE
DESCRIPTION Statement indicates the file
organization:

• I = indexed file

• D = direct access file

THE VRPG INTERFACE 71

THE VRPG INTERFACE 12

Language-Dependent
Restrictions

The following rules apply for using V R P G
with MIDASPLUS files:

• All keys in an indexed file must be in

the da t a record.

• The maximum length of the primary
key of an indexed file is 32 characters.

• The pr imary key of a direct access file
must, be type ASCII.

• A V R P G program can update only the
da t a field.

• A Delete operation (DEL on output)
may be performed on indexed files only.

Describing a
MIDASPLUS File in
VRPG

Table 8 lists the V R P G Description
Specifications for MIDASPLUS files. Table 9
lists the MIDASPLUS specific fields in the
other V R P G statements . See the RPG II V-
Mode Compiler Reference Guide for more
complete details of these s tatements .

TABLE 8. VRPG File Description
Specifications for MIDASPLUS

Files

Attributes Column(s) What
to Specify

File Type 15 I = Input
0 = Output
U = Update

File 16
Designation

P = Primary
S = Secondary
C = Chained
D = Demand
Blank = Output

File
F o r m a t

Record

Length

Mode of
Processing

19

21-27

28

F = Fixed-length

The record

length, including
the P r imary key
length.

R = random by
key, relative
record number , or
ADDROUT file.

THE VRPG INTERFACE 73

THE VRPG INTERFACE

Attributes Column(s) What
to Specify

V

L = sequential
within limits, or
by record address
file.
Blank = sequen­
tial by key or
consecutive (direct
access).

Key-Field 29-30 Number of
Length characters in

primary index -
for Indexed files
only. (Length
from 1-32)

File Organ­
ization

32 I = Indexed
D = Direct

Key Col. 35-38 Column where
Position the primary key

starts in the
data record -
for indexed
files only.

Device 40-46 DISK (Required)

Attributes Column(s) What
to Specify

File
Addition

66 A = Add records
to a non-empty
Indexed file.

U = Add un­
ordered records to
an empty Indexed
file. Specify O
in column 15.
Blank = Add
ordered records
to an empty
Indexed file.
Specify O in
column 15.

THE VRPG INTERFACE 75

THE VRPG INTERFACE 76

TABLE 9. VRPG Fields For Other
Statements

Statement Column(s) What
to Specify

Calculation 28-32 Operation: SETLL
READ
CHAIN

Calculation 54-55 Indicator on for
record not found

Extension 11-18 Name of the sepa­
rate sequential
limits file for
the RAF method

Extension 19-26 Name of the
MIDASPLUS file
to be processed

Input 61-62 Matching fields or
chaining fields

Statement Column(s) What
to Specify

Output 16-18
Specifications

ADD = Add records
to an indexed file

DEL = Delete
records

(Blank = Add
records to a
direct file)

THE VRPG INTERFACE 77

THE OFFLINE
CREATE ROUTINES

This section discusses KX$CRE and
KX$RFC, which are user-callable, offline
routines that serve as an alternative to
CREATK. You will find KX$CRE and
KX$RFC are helpful only if you need to
create file templates or read a file
configuration from within your application.
It is recommended that you use command
files that invoke CREATK rather than using
KX$CRE or KX$RFC.

THE OFFLINE CREATE ROUTINES 79

THE OFFLINE CREATE ROUTINES 80

KX$CRE

You can use KX$CRE to create a
MIDASPLUS file from a program. It is the
same routine used by CREATK. The calling
sequence is:

CALL K X $ C R E [filnam,namlen, flags,alloc,

pride f,secdef,errcod)

The parameters , da ta types, and their uses
are

filnam (INT*2)
The pa thname of the file to be opened,
two characters per word.

namlen (INT*2)
Length of filnam in characters.

flags (INT*2)
Global flags: M$DACC enables direct
access; M $ N R N W sets the file lock to n
readers and n writers (required).

alloc (REAL*4)
The number of da ta records to
preallocate if file is direct access. Use
only if M$DACC flag is set. Set to 0 for
keyed index file.

pride f(6) (INT*2)
Definition array for the pr imary index.
See Table 10, below.

secdef(6,17) (INT*2)
Definition array for the 17 secondary
indexes. See Table 10, below.

errcod(2) (INT*2)
Error code returned by MIDASPLUS in
errcod(l). errcod(2) contains an index
number if applicable.

T h e P r i d e f a n d S e c d e f A r r a y s

Assign values to pridef and secdef to
indicate the characteristics of the pr imary
index and any secondary indexes tha t will be
included in the file template. The six-element,
one-dimensional array pridef (1...6) contains
the necessary information to define the
pr imary index. The two-dimensional secdef
array defines the secondary indexes.
Secdef{l...Q,i) defines secondary index " i " . All
of the elements in these arrays are
I N T E G E R * 2.

THE OFFLINE CREATE ROUTINES 81

THE OFFLINE CREATE ROUTINES 82

Table 10, below, lists the six elements of each

array.

TABLE 10. Pridef and Secdef

Array Elements

Pridef Secdef

(i) (14)

(2) (2,i)

Description

Contains one or more
flag values specifying the
key type and size. For
secdef, it also determines
the duplicate s ta tus of
the key. See Table 11,
below, for key-type flags.

States the pr imary key
size in bits, bytes, or
words [pridef] or the
secondary key size in
bits, bytes, or words
(secdef). A 0 in secdef
indicates tha t the index
does not exist.

(3) Data record size. Supply
a 0 for variable- length
records.

(3,i) Secondary da ta size.

Supply a 0 if you do not

want this feature.

Pridef Secdef Description

(4) (4,i) Level 1 block size.
Supply a 0 to use the
default block size (1024
words).

(5) (5,1) Level 2 block size.
Supply a 0 to use the
default block size (1024
words).

(6) (6,i) Last level block size.
Supply a 0 to use the
default block size (1024
words).

Table 11, below, lists the flags used for the
first element of each of pridef and secdef
arrays:

TABLE 11. Flags for pridef(l) and

secdef (l)

Flag Flag Meaning
Type Value

Index- M $ D U P P Duplicates permit ted
specific for this key (second­

aries only)

THE OFFLINE CREATE ROUTINES

THE OFFLINE CREATE ROUTINES 84

Flag
Type

Key

Key

Key

Key

Key

Flag
Value

M$BSTR

M$SPFP

M$DPFP

M$SINT

M$LINT

Meaning

Bit string

Single-precision float­
ing point (REAL*4)

Double-precision float­
ing point (REAL*8)

Short (16 bits) integer
(INT*2)

Long (32 bits) integer
(INT*4)

Key M$ASTR ASCII string

Key size M$BIT Key length is

specified in bits

Key size M$BYTE Key length is
specified in bytes

Key size M$WORD Key length is
specified in words

KX$RFC

K X $ R F C is a user-callable routine tha t

re turns the file configuration of an already

existing MIDASPLUS file. The K X $ R F C

calling sequence is:

CALL K X $ R F C {filnam,namlen, flags,

alloc ,pride j\secde j\errcod)

The parameters , da ta types, and their uses

are

filnam (INT*2)
P a t h n a m e of the MIDASPLUS file whose
configuration is to be returned. User
supplied.

namlen (INT*2)
Length of filnam in characters. User

supplied.

flags (INT*2)
Global flags: M$DACC is returned for
direct access files; 0 for keyed-index files.

alloc (REAL*4)
Number of da ta records pre-allocated if
direct access is enabled. Returned by
K X $ R F C .

THE OFFLINE CREATE ROUTINES 85

file:///secde
file:///errcod

THE OFFLINE CREATE ROUTINES 86

pride f (INT*2)
Definition array for the primary index.
Returned by KX$RFC.

secdef (INT*2)
Definition array for the 17 secondary
indexes. Secdef(l...Q,i) contains the
definition for secondary index i.
Returned by KX$RFC.

errcod (INT*2)
Error code or 0 if no error. Returned by
KX$RFC.

K X $ R F C A r g u m e n t s

You do not supply the flags argument in a
call to KX$RFC; a successsful call to the
KX$RFC subroutine returns it. If the file is a
direct access file, the flag M$DACC is
returned; otherwise, flags is returned as 0. If
the file is not enabled for direct access,
KX$RFC zeroes the argument.

Pridef and Secdef Flags: The flags
returned on this call are:

M$BSTR, M$MSPFP, M$SINT, M$LINT,
and M$ASTR
Possible settings for bits 1-4

M$DUPP
The setting of bit 6

MBIT, MBYTE, and M$WORD
Possible values of bits 6-7 (KX$RFC does
not usually return M$WORD.)

Element secdef(2,i) is returned as 0 if there is
no index "i" in this file. See Table 11 for flag
meanings.

THE OFFLINE CREATE ROUTINES 87

THE OFFLINE BUILD
ROUTINES

This section lists the three routines that can
be used to populate a MIDASPLUS file. Never
use OPENM$, NTFYM$, or CLOSM$ with
these routines. For more complete
information on the restrictions and use of the
offline routines see the MIDASPLUS User's
Guide.

THE OFFLINE BUILD ROUTINES 89

THE OFFLINE BUILD ROUTINES 90

When using these routines be sure to
$INSERT the following files in your
FORTRAN program:

SYSCOM>PARM.K.INS.FTN
SYSCOM>ERRD.INS.FTN
SYSCOM > KEYS > .INS .FTN

PRIBLD
PRIBLD builds a primary index subfile and

a corresponding data subfile from an input
file sorted by the primary key. The
MIDASPLUS (output) file must be empty.
PRIBLD's calling sequence is

CALL PRIBLD ($eqfig,primkey,data,
dlength ,unit ,altrtn ,danum)

The parameters, data types and their uses are

seqflg (INT*2)
The event sequence flag.

primkey (INT*2)
The primary key value to use on this
call.

data (INT*2)
Data to be added.

dlength (INT*2)
Length of the data.

unit (INT*2)
File unit number.

altrtn (INT*2)
Alternate return statement number.

danum (REAL*4)
Entry number for direct access files.

SECBLD

SECBLD builds secondary index subfiles
from input data that is sorted by secondary
key. The secondary index subfile must be
empty, and a copy of the primary key must
be included as one of the arguments of the
call. The SECBLD calling sequence is

CALL SECBLD (seqfig,seckcy ,vkey,index,
secdat ,sdsiz, unit, altrtn)

The parameters, data types and their uses are

seqflg (INT*2)
The event sequence flag.

THE OFFLINE BUILD ROUTINES 91

THE OFFLINE BUILD ROUTINES 92

seckey (INT*2)
The secondary key value to be added to
the index subfile.

pkey (INT*2)
The corresponding primary key.

index (INT*2)
The secondary index subfile number.

seed at (INT*2)
The secondary data to be stored in this
index entry. Specify zero if not
applicable.

sdsiz (INT*2)
The size of secondary index data, in
words. Specify zero if not applicable.

unit (INT*2)
File unit number.

altrtn (INT*2)
Alternate return statement number.

BILD$R

BELD$R builds a data subfile and primary
index subfile,or a secondary index subfile.

CALL BILD$R (seqflg,key;pbuf,bufsiz,
danum,index,unit ,altrtn)

The parameters, data types, and their uses
are

seqfl (INT*2)
The event sequence flag.

key (INT*2)
The primary or secondary key value to
be added to the index subfile.

pbuf (INT*2)
Data subfile entry, primary key, or
primary key and secondary data,
depending on the action to be taken on
this call to BILD$R.

bufsiz (INT*2)
Size of pbuf in words. Set to zero if
adding fixed length date entry. Set to
length of data entry if adding variable
length data entry. Set to length of
primary key length plus secondary data
length if adding secondary data.

THE OFFLINE BUILD ROUTINES 98

THE OFFLINE BUILD ROUTINES 94

danum (REAL*4)
Record entry number for direct access
files. Specify zero if file is keyed-index, or
if you are adding a secondary index
entry.

index (INT*2)
The number of the index subfile being
built. Specify zero for the primary index.

unit (INT*2)
File unit number.

altrtn (INT*2)
Alternate return statement number.

Note
When adding a primary index
entry, the bufsiz argument is
ignored unless the file contains
variable length records. In this
case, bufsiz represents the length of
the data record only. When adding
a secondary index entry, supply a 0
if you have already put the desired
secondary data into pbuf. If non­
zero, bufsiz indicates the total size
of the primary key and the size of
the secondary data supplied in
pbuf. Extra secondary data is
ignored and insufficient data is
padded with zeros.

9

ERROR MESSAGES

This chapter lists the error messages for the
MIDASPLUS utilities and offline routines,
MIDASPLUS runtime error codes, and the
COBOL status codes. If you find yourself
with an error that does not seem to be
explained by the list of MIDASPLUS error
codes, it may be a COBOL status code (if
your access program is written in COBOL), or
it may be a PRIMOS error code. See
MIDASPLUS User's Guide for a list of
PRIMOS error codes.

ERROR MESSAGES 95

ERROR MESSAGES 96

KBUILD Error Messages

The following are KBUILD runtime error
messages. If an error is fatal, KBUILD aborts
after reporting it. Although files are
sometimes damaged in fatal errors, the files
are usually still usable. A non-fatal error is a
warning only and does not harm the KBUILD
process. The record that causes the warning
message, however, is not added to the file.

UNABLE TO REACH BOTTOM INDEX LEVEL
The last level index block could not be
located; file is damaged. (Fatal)

FILE IN USE
The file is not available for KBUILD use.
KBUILD must have exclusive access to
the file. You are returned to PRIMOS.
(Fatal)

INDEX 0 FULL — INPUT TERMINATED
If the maximum number of entries in
primary index is exceeded, KBUILD
aborts. (Fatal, but file is still okay)

INDEX index -no FULL — NO MORE
ENTRIES WILL BE ADDED TO IT
If the maximum number of entries in the
secondary index is exceeded, KBUILD
aborts. Building of other indexes
continues. (Fatal, but file is still okay)

INDEX 0 FULL — REMAINING RECORDS
WILL BE DELETED
Data records are added to the subfile
first, in the order read in from the input
file. Then the primary index entries are
added, in sorted order, to point to them.
KBUILD ran out of room in the primary
index when trying to add entries to point
to those already in the data subfile.
KBUILD is forced to set the delete bit on
in data subfile entries whose primary
keys do not fit in the primary index.
(Fatal, but file is still okay)

INVALID DIRECT ACCESS ENTRY NUMBER
— RECORD NOT ADDED
The user-supplied direct access record
number is an ASCII string, but it is not
legitimate if it contains non-numeric
characters. Also, the entry number may
be less than or equal to 0, may not be a
whole number or may exceed the number
of records allocated. (Non-fatal)

INVALID OUTPUT DATA RECORD LENGTH
— RECORD NOT ADDED
The output record length is an invalid
ASCII string: that is, it contains non-
numeric characters. Also, the size
specified might exceed the input record
size. (Non-fatal)

ERROR MESSAGES 97

ERROR MESSAGES 98

THIS INDEX IS NOT EMPTY. EITHER
ZERO THE INDEX OR DO NOT
SPECIFY THIS KEY AS SORTED,
.sk KBUILD cannot add sorted data
entries to any index subfile that already
contains entries. Do not specify the
sorted option during the KBUILD dialog.
(Non-fatal)

CAN'T FIND PRIMARY KEY IN INDEX —
RECORD NOT ADDED
This error occurs when adding secondary
index entries to an already populated file.
The primary key value that you supplied
in the input file was not found in the
primary index. (Non-fatal)

INDEX 0: INVALID KEY -- RECORD NOT
ADDED
This error could occur if the input file is
sorted and an entry was out of order, or
if a duplicate key value appeared for an
index that does not allow duplicates.
(Non-fatal)

INDEX i n d e x - n o : KEY SEQUENCE ERROR
— RECORD NOT ADDED
A duplicate value was discovered for the
primary key or for a secondary key that
does not allow duplicates. (Non-fatal)

MDUMP Error Messages

When MDUMP dumps a file, errors tha t it
finds are reported along with the milestone
statist ics. The following are MDUMP's error
messages and their meanings:

BAD DATA RECORD POINTER - IGNORED
MDUMP found a bad da ta record pointer
in the MIDASPLUS file. The dump
continues.

BAD INDEX BLOCK OR INDEX BLOCK
POINTER

MDUMP found an incorrect index block
or index block pointer in the
MIDASPLUS file. The dump halts .

UNABLE TO REACH BOTTOM INDEX LEVEL
MDUMP found an incorrect index block
or index block pointer before dumping
any records. The dump does not occur.

INDEX BLOCK SIZE GREATER THAN
MAXIMUM DEFAULT
MDUMP found an index block larger
than the maximum default size. The
dump halts.

ERROR MESSAGES

ERROR MESSAGES 100

Kiddel Error Messages

FILE IN USE
The file is not available for KIDDEL use.
KIDDEL must have exclusive access to
the file. You are returned to PRIMOS.

SPY Errors

Internal system errors and user input errors
are the only kind of errors tha t can occur
during the execution of SPY. Internal system
errors are fatal. User input errors can usually
be t rapped since only specific input choices
are allowed.

If you make a detectable error when
entering a menu option, you are given two
more chances to enter a valid choice and then
SPY stops. If an out-of-range or otherwise
detectable invalid entry is made for user
number or filename, you are given two more
chances before SPY gives up.

If you request tha t SPY report the number
of locks on a file and the SPY _ F N A M E
configuration is O F F (the default), the
following error message appears.

The SPY_FNAME c o n f i g u r a t i o n i s OFF
fo r MIDASPLUS. SPY canno t d isplay-
l o c k s by FILENAME. See your sys tem
a d m i n i s t r a t o r i f you wish t o have
t h e SPY_FNAME c o n f i g u r a t i o n changed.
H i t RETURN t o C o n t i n u e .

See the MIDASPLUS User's Guide for
additional information about SPY_FNAME
and the configurations.

MPACK Error Messages

The following are MPACK error messages.
If an error is fatal, MPACK aborts after
reporting it. A non-fatal error is a warning
only and does not harm the MPACK process.

F a t a l M e s s a g e s

UNABLE TO REACH BOTTOM INDEX LEVEL
MPACK was unable to find a last level
index block for an index. The file is
damaged. Use MDUMP to dump the
data file into a sequential disk file and
use KBUHJD to rebuild the file.

ERROR MESSAGES 101

ERROR MESSAGES 102

DATA SUBFILE FULL
This message may appear if M P A C K is
used to implement segment subfiles or
segment directories tha t are smaller than
the default. Use the EXTEND option of
C R E A T K to enlarge the subfile size or
segment directory length.

INDEX FULL
This message may appear if M P A C K is
used to implement index subfiles or
segment directories tha t are smaller than
the default. There is no more room in
the index subfile. Use the EXTEND
option of CREATK to enlarge the subfile
size or segment directory length.

ABORTING MPACK
This message appears when a fatal error
occurs. Use the JUNK option of
KIDDEL to delete the scratch files
created by MPACK, or if you are not
overwriting the old file, delete the new
file.

F ILE IN USE

This file is not available for M P A C K use.
M P A C K must have exclusive access to
the file. You are returned to PRIMOS.

W a r n i n g M e s s a g e s

INDEX SUBFILE DOES NOT EXIST
You supplied an index number t h a t was
not defined for this file.

F ILE ALREADY EXISTS — TRY AGAIN
You specified the name of an existing file
in response to ENTER NEW MIDASPLUS
FILE NAME? prompt of the D A T A
option path . M P A C K does not overwrite
an existing file in this case. You must
enter the name of a non-existent file.

INVALID KEY SEEN (IGNORED)
A key is out of order in the index or the
key is a duplicate and duplicates are not
allowed in the specified index.

INVALID DIRECT ACCESS ENTRY NUMBER
SEEN (IGNORED)
A record number is not greater than zero,
or is not a whole number, or is greater
than the pre-allocated record number
limit.

ERROR MESSAGES 108

ERROR MESSAGES 104

KX$CRE Error
Messages

Errors occurring during the building of a
template could originate in the file system or
in MIDASPLUS. Errors can result from
invalid user arguments or an internal
MIDASPLUS problem. This section lists the
most common K X $ C R E error codes.

ME$BAS
Allocation size is invalid. The number
specified in alloc was either less than 1.0,
not a whole number, or too big to
allocate the number passed in the user
supplied alloc argument due to the
default segment directory and segment
subfile lengths.

ME$BDS
D a t a size is invalid because the da ta size
is negative; or the da ta size specified in
pridef{Z) indicates variable-length da ta
records, but the file is configured for
direct access, and thus requires fixed-
length da ta records.

ME$BKS

Key size is invalid. For example, the key
size is too big, the key size is negative, or
the pr imary key size is 0. (The limit is

16 words except for ASCII strings, which

may be up to 32 words.)

ME$BKT
Key type is invalid.

ME$BL1
Level 1 block size is invalid. The block
size must be positive, not larger than
1024 words, and must hold at least two
index entries.

ME$BL2

Level 2 block size is invalid.

ME$BLL

Last level block size is invalid. When
building a secondary index, this error
may also occur when the secondary da t a
size, secdef (3,i), is too large (in
comparison to the block size) to fit the
mandatory two entries per block.

ME$NDA
No duplicates are allowed. You specified
the flag M $ D U P P in pridef(l).
Duplicates are never allowed for the
pr imary key.

ERROR MESSAGES 105

ERROR MESSAGES 106

PRIBLD, SECBLD, and
BILD$R Er ro r Messages

This section lists the PRIBLD, SECBLD,
and BILD$R error messages. If you get one
of the following error messages, you can call
the routine to finish building the index (Set
seqflg to 2). Your file will be built except for
the problem tha t the error code noted.
SECBLD and BILD$R replace the symbols
(used in the error messages below) with a
secondary index number.

If a file system error, which is not listed
below, occurs, your file may be damaged. If
this happens, use KIDDEL to zero your file.
Try to figure out what happened, and t ry
again.

CAN'T USE PRIBLD AND BILD$R
SIMULTANEOUSLY
You added one or more entries to the
pr imary index with BILD$R and then
called PRIBLD. Simultaneous access to
the pr imary index subfile is not allowed.
Ei ther continue adding entries or finish
building index 0 with the appropria te
calls to BILD$R, but not PRIBLD.

ILLEGAL SEQFLG

INDEX ##: ILLEGAL SEQFLG
If either one of the two above messages
appears, the value of seqflg is incorrect.
The first call to the routine to add an
entry must have a seqflg of 0, which the
routine returns as a 1. Later calls to the
routine to add additional entries must
continue to have a seqflg of 1. The final
call to the routine to finish building
index 0 for that MIDASPLUS file must
have a seqflg of 2, which the routine
returns as a 3.

NOT A VALID MIDASPLUS FILE

INDEX ##: NOT A VALID MIDASPLUS
FILE
The first time that the routine is called
to add an entry (seqflg = 0) to the
primary or secondary index of a
MIDASPLUS file, the routine calls
KX$RFC to verify that the file is a valid
MIDASPLUS file and to gather certain
configuration data needed to build the
file.

INDEX 0: INDEX BLOCK SIZE GREATER
THAN MAXIMUM DEFAULT

ERROR MESSAGES 107

ERROR MESSAGES 108

INDEX # # : INDEX BLOCK SIZE GREATER
THAN MAXIMUM DEFAULT
The above two messages indicate tha t a
fatal error may have occurred on the first
call to the routine tha t adds an entry to
a file created with the extended options
path . The index block size was defined
as larger than the default block size of
1024 words. Recreate the file.

KEY SEQUENCE ERROR
The key provided in the current call is
less than or equal to the key provided in
the previous call to PRIBLD.

INDEX 0 : + 0 . n n n n n n n E+nn INVALID
DIRECT ACCESS ENTRY NUMBER
This error occurs during direct access file
processing only. It can happen for one of
three reasons:

1. The record number supplied was
less than zero.

2. The record number supplied was
not a whole number.

3. The supplied number exceeds the
number of entries preallocated by
CREATK. You may have changed
this number with C R E A T K
without performing M P A C K on the
file to effect the change. Use

M P A C K against the file before
restart ing.

DATA SUBFILE FULL

INDEX 0: DATA SUBFILE FULL
If either one of the above two messages
appears, no more entries may be added
to the da ta subfile and, therefore, to the
pr imary index. Call the routine to finish
the pr imary index (with seqjlg = 2) with
the entries already added.

INDEX # # : DOES NOT EXIST
The indicated index is either an invalid
index number or does not exist in the
MIDASPLUS file. Either go back, ADD
the index with CREATK, and t ry again,
or remove all references to this index
from the program.

INDEX # # : CAN'T USE SECBLD AND
BILD$R SIMULTANEOUSLY
You may have added one or more entries
to this index with BILD$R and have now
called SECBLD to add an entry to it.
You may continue adding entries or
finish building this index with the
appropria te calls to BELD$R, but not to
SECBLD.

ERROR MESSAGES 109

ERROR MESSAGES 110

INDEX # # : NOT ZEROED
The index cannot contain any entries if
you are trying to use PRIBLD or
SECBLD to build it. Use KIDDEL to
zero this index or to zero the entire file.

INDEX ##: KEY SEQUENCE ERROR
The supplied key is less than the key
supplied in the last call to the routine for
this index, or the secondary key is a
duplicate of the secondary key supplied
in the last call to the routine for this
index, and the index does not allow
duplicates.

INDEX # # : CAN'T FIND PRIMARY KEY
IN FILE

The routine was unable to find the key
value supplied for the pbuf or pkey

argument . The primary index subfile
does not contain this value.

INDEX # # : INDEX FULL

You may not add any more entries to
this part icular secondary index, bu t you
may still call the routine (set seqflg to 2)
to finish the index.

INDEX # # : CAN'T USE BILD$R AND
PRIBLD/SECBLD SIMULTANEOUSLY
This error message appears when you
have added one or more entries to this

index with PRIBLD or SECBLD and then
called BILD$R to add an entry to the
same index. You can either continue
adding entries or make the appropria te
calls to either PRIBLD or SECBLD (but
not to BELD$R) to finish building this
index.

INDEX 0 : DIRECT ACCESS FILE -

INDEX OF - 1 AND ENTRY #
REQUIRED FOR PRIMARY KEY
You a t tempted to build the pr imary
index of a direct access file. Use an index
number of -1 (not 0); supply a REAL*4
entry number in danum.

Runtime Error Codes

The following is a list and explanation of
the MIDASPLUS runt ime error codes. The
error codes are returned directly to you unless
error t raps are included in your program. If
an error is not listed, see the section,
PRIMOS Error Messages, below. If you are
using COBOL, check to see if the error is a
MIDASPLUS error or a file s ta tus error.
(COBOL status codes are listed later in this
chapter.)

ERROR MESSAGES 111

ERROR MESSAGES 112

M i s c e l l a n e o u s E r r o r C o d e s

Code Explanation

I Duplicates exist for the current key.

7 The sought-after entry does not

exist in the file.

10 Locking was requested on a record
t ha t is already locked. COBOL
status code is 90. Check your ACLs
and make sure tha t the
R E A D / W R I T E locks are set
correctly. The record might not be
locked; you could lack the necessary
ACLs.

I I The da ta record does not have the
locked bit set when it should. This
happens when a user a t tempts an
update without first locking the
record.

12 Duplicate keys are not allowed.

13 An unrecoverable concurrency error
has occurred. For example, another
user deleted your current entry.

19 The disk is full.

R E A D / W R I T E Error Codes

Error codes in the 20 range are usually
READ/WRITE errors. Try to do a LOGPRT
which creates a LOGLST. This will tell you
if there are any unrecoverable errors on disk
or memory parity errors. (See the System
Operator's Guide for additional information
about LOGPRT.) The problem could be a
hardware problem.

ERROR MESSAGES 113

ERROR MESSAGES 114

Make sure tha t the CREATK template is the
same size as the FD in COBOL or the buffer
size in F O R T R A N .

Code Explanation

20 An error was encountered while
writing a record or index block.

2 1 An error was encountered while
reading a da ta record or index
block. When using F O R T R A N , it is
necessary to use K $ G E T U rather
than hard-coded file units so tha t
MIDASPLUS can monitor the file
units tha t are open.

22 A file system error was encountered
while a t tempt ing to get a file unit or
the internal file unit table is full.
When using F O R T R A N , it is
necessary to use K $ G E T U rather
than hard-coded file units so tha t
MIDASPLUS can monitor the file
units tha t are open.

2 3 The unit is not open as a segment
directory.

28 You at tempted to write to a read­
only file.

P r o g r a m m i n g Error Codes

Error codes in the 30 range are usually
programming errors: for example, reading
past the end of a file. Check your program if
you receive an error code in this range.

Code Explanation

30 You did not ask for the array to be
returned when it must be returned.
Set FL$RET in flags on the call.

31 The array must be supplied but was
not. Set the flag FL$USE.

32 You supplied a bad length (for
example, an invalid record length)
or the index supplied is invalid.

33 You supplied an invalid array.

34 The use of NEXT$ is not allowed m
direct access files.

35 You cannot do an indexed add to a
direct access file.

36 You set FL$USE in flags but the
current array involved a different
index from the one that you
supplied in this call.

ERROR MESSAGES 115

ERROR MESSAGES 116

I n t e r n a l E r r o r C o d e s

Error codes in the 40 range are usually
internal errors. If you receive a 40 or 4 1
error message, run MPLUSCLUP -ALL from
the system console. See the MIDASPLUS
User's Guide. If the problem persists, reshare
MIDASPLUS.

If you receive a 42-45 error, there are
corrupted pointers in the file. Run M P A C K
with the DATA option. See the MIDASPLUS
User's Guide. If the problem persists run
M D U M P and KBUILD to restructure the file.

Code Explanation

40 Fa ta l internal error.

4 1 Timeout occurred while waiting for
buffers.

4 2 There is no offspring pointer or no
next block found. The index tree is
corrupted.

44 You at tempted to access an indexed
file as direct access or the file is
direct access and the entry was not
found.

4 5 Got a da ta record but expected an
index block.

A d d i t i o n a l E r r o r C o d e s

Code Explanation

51 Invalid index pointer in index entry.

For example, segment number is 0.

71 An error occurred while attempting
to delete an entry from a direct
access file.

85 The index or data subfiles are full.
Use the EXTEND option of
CREATK to extend the subfile.
Increase the subfile in a multiple of
512,000. Use MPACK with the
DATA option on the file after the
EXTEND to restructure the indexes
and the data subfiles.

92 Network error.

10001 You supplied an invalid parameter
on an OPEN or CLOSE.

10002 The MIDASPLUS internal tables are
full.

ERROR MESSAGES 111

ERROR MESSAGES 118

Code Explanation

10003 Not a segment directory.

10004 Fatal internal error. Contact Prime
Customer Service.

10005 Error opening remote file.

COBOL STATUS
CODES

The following section lists the COBOL
status codes and the equivalent MEDASPLUS
error codes and states whether the status
codes appear with INDEXED (I) and/or
RELATIVE (R) files.

Status MPLUS File Interpretation
Code Code Type

00 Successful comple­
tion of the opera­
tion.

Status
Code

10

MPLUS
Code

7

File

Type

I, R

Interpretation

The end of file
was reached on a
READ operation.
The file pointer is
positioned past
the logical end
of the file.

22 12 I, R An a t t empt was

made to perform
a W R I T E or RE­
W R I T E tha t would
create a duplicate
pr imary key entry.
Duplicate pr imary
key values are
illegal.

23 I, R The record was not
found on an unsuc­
cessful key search.
There is no record
in the file with
this key value.

30 19/20 I, R An error pari ty
such as quota
exceeded or disk
full.

ERROR MESSAGES 119

ERROR MESSAGES 120

Status
Code

90

MPLUS
Code

10

File
Type

I, R

Interpretation

The record is
already locked.
Another user or
process has al­
ready locked
this record for
update.

91 11 I, R The record is
not locked. A
R E W R I T E opera­
tion was a t tempted
without first
locking the record
with a READ
operation.

92 12 An a t tempt was
made to add a
duplicate second­
ary key value to
a secondary index
subfile tha t does
not permit dupli­
cates.

Status MPLUS File Interpretation

Code Code Type

93 30-33 I The indexes refer­
red to in the
program do not
match those de­
fined during
template creation.

94 13 I, R A MIDASPLUS
concurrency error.
The command at­
tempted to operate
on a record tha t
another user just
deleted.

95 32 I, R A record length

was supplied for
the file tha t
does not match
the record size
assigned to the
file during temp­
late creation.

ERROR MESSAGES 121

ERROR MESSAGES 122

Status
Code

96

MPLUS
Code

20/21

File
Type

R

Interpretation

A record number
was supplied
larger than the
number that
CREATK allo­
cated.

98 R An attempt was
made to do an
indexed add to a
direct access file.
Entries cannot be
added to a RELA­
TIVE file even
if it is opened
for INDEX access.

99 I, R Any MIDASPLUS
system error
(greater than 40)
that cannot be
handled at the
program level.

	Front Cover
	
	Title Page
	i
	Copyright
	ii
	Printing History
	iii
	How To Order Technical Documents
	iv
	Contents
	v
	vi
	vii
	viii
	Prime Documentation Conventions
	ix
	x
	xi
	xii
	Chapter 1
	Utilities
	1
	CREATK
	2
	3
	4
	5
	6
	7
	8
	KBUILD
	9
	10
	11
	12
	13
	14
	15
	KIDDEL
	16
	17
	MPACK
	18
	19
	20
	MDUMP
	21
	22
	23
	MPLUSCLUP
	24
	SPY
	25
	26
	Chapter 2
	The FORTRAN Interface
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	Chapter 3
	The COBOL Interface
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	Chapter 4
	The BASIC/VM Interface To MIDASPLUS
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	Chapter 5
	The PL/I Subset G Interface
	63
	64
	65
	66
	67
	68
	69
	70
	Chapter 6
	The VRPG Interface
	71
	72
	73
	74
	75
	76
	77
	78
	Chapter 7
	The Offline Create Routines
	79
	80
	81
	82
	83
	84
	85
	86
	87
	88
	Chapter 8
	The Offline Build Routines
	89
	90
	91
	92
	93
	94
	Chapter 9
	Error Messages
	95
	96
	97
	98
	99
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	
	Back Cover

